Home
Conference Info
Sponsorship Information
Speakers
Schedule
Exhibitors
Media Sponsors
Registration
Press Registration
  Topics
  Call For Papers
  Past Events
  Sessions
  Presentations
  Power Panels
  Videos
Untitled Document
2018 East Exhibitors

Untitled Document
2018 East Media Sponsors








Untitled Document
2017 West
Premium Sponsors
Diamond



Platinum
@DevOpsSummit

Bronze










Untitled Document
2017 West
Keynote Sponsor


Untitled Document
2017 West Exhibitors
























@ThingsExpo











AWS Broke the Internet Again or, Better, a Typo | @CloudExpo #AI #ML #DL
An AI-defined infrastructure can help to avoid service disruptions

Amazon Web Services (AWS) broke the Internet again or better "a typo". On February 28, 2017, an Amazon S3 service disruption in AWS' oldest region US-EAST-1 shuts down several major websites and services like Slack, Trello, Quora, Business Insider, Coursera and Time Inc. Other users were reporting that they were also unable to control devices which were connected via the Internet of Things since IFTTT was also down. Those kinds of disruptions are becoming more and more business critical for today's digital economy. To prevent these situations, cloud users should always consider the shared responsibility model in the public cloud. However, there are also ways where Artificial Intelligence (AI) can help. This article describes that an AI-defined Infrastructure respectively an AI-powered IT management system can help to avoid service disruptions of public cloud providers.

Amazon S3 Service Disruption - What has happened
After every service disruption AWS writes a summary of what was going on during an incident. This is what happened on the morning of February 28.

"The Amazon Simple Storage Service (S3) team was debugging an issue causing the S3 billing system to progress more slowly than expected. At 9:37AM PST, an authorized S3 team member using an established playbook executed a command which was intended to remove a small number of servers for one of the S3 subsystems that is used by the S3 billing process. Unfortunately, one of the inputs to the command was entered incorrectly and a larger set of servers was removed than intended. The servers that were inadvertently removed supported two other S3 subsystems.  One of these subsystems, the index subsystem, manages the metadata and location information of all S3 objects in the region. This subsystem is necessary to serve all GET, LIST, PUT, and DELETE requests. The second subsystem, the placement subsystem, manages allocation of new storage and requires the index subsystem to be functioning properly to correctly operate. The placement subsystem is used during PUT requests to allocate storage for new objects. Removing a significant portion of the capacity caused each of these systems to require a full restart. While these subsystems were being restarted, S3 was unable to service requests. Other AWS services in the US-EAST-1 Region that rely on S3 for storage, including the S3 console, Amazon Elastic Compute Cloud (EC2) new instance launches, Amazon Elastic Block Store (EBS) volumes (when data was needed from a S3 snapshot), and AWS Lambda were also impacted while the S3 APIs were unavailable."

Read more under "Summary of the Amazon S3 Service Disruption in the Northern Virginia (US-EAST-1) Region".

Bottom line, a typo crashed the AWS powered Internet! AWS outages already have a long history and the more AWS customers running their web infrastructure on the cloud giant, the more issues end customers will experience in the future. According to SimilarTech only Amazon S3 is already used by 152,123 websites and 124,577 unique domains.

However, following the philosophy of "Everything fails all the time (Werner Vogels, CTO Amazon.com)" means if you are using AWS you must "Design for Failure".  Something cloud role model and video on demand provider Netflix is doing in perfection. In doing so, Netflix has developed its Simian Army an open source toolset everyone can use to run a cloud infrastructure on AWS high-available.

Netflix "simply" uses the two levels of redundancy AWS offers. Multiple regions and multiple availability zones (AZ). Multiple regions are the masterclass of using AWS, very complex and sophisticated since you must build and manage entire separated infrastructure environments within AWS' worldwide distributed cloud infrastructure. Multiple AZs are the preferred and "easiest" way for high availability (HA) on AWS. In this case, the infrastructure is built within more than one data center (AZ). In doing so, a single region HA architecture is deployed in at least two or more AZs - a load balancer in front of it is controlling the data traffic.

However, even if "typos" shouldn't happen the recent accident shows, that human error is still the biggest issue running IT systems. In addition, you can blame AWS only to a certain extend since the public cloud is about shared responsibility.

Shared Responsibility in the Public Cloud
An important public cloud detail is the self-service. Depending on its DNA the providers are only taking responsibility for specific areas. The customer is responsible for the rest. In the public cloud, it is about sharing responsibilities - this model is called Shared Responsibility. The provider and its customers divide the field of duties among themselves. In doing so, the customer's self-responsibility plays a major role. In the context of IaaS utilization, the provider is responsible for the operations and security of the physical environment. He is taking care of:

  • Set up and maintenance of the entire data center infrastructure.
  • Deployment of compute power, storage, network and managed services (like databases) and other micro services.
  • Provisioning the virtualization layer customers are using to demand virtual resources at any time.
  • Deployment of services and tools customers can use to manage their areas of responsibility.

The customer is responsible for the operations and security of the logical environment. This includes:

  • Set up of the virtual infrastructure.
  • Installation of operating systems.
  • Configuration of networks and firewall settings.
  • Operations of own applications and self-developed (micro) services.

Thus, the customer is responsible for the operations and security of his own infrastructure environment and the systems, applications, services, as well as stored data on top of it. However, providers like Amazon Web Services or Microsoft Azure provide comprehensive tools and services customers can use e.g. to encrypt their data as well as ensure identity and access controls. In addition, enablement services (micro services) exist that customers can adopt to develop own applications more quickly and easily.

In doing so, the customer is all alone in its area of responsibility and thus must take self-responsibility. However, this part of the shared responsibility can be done by an AI-defined IT management system respectively an AI-defined Infrastructure.

An AI-defined Infrastructure can help to avoid Service Disruptions
An AI-defined Infrastructure can help to avoid service disruptions in the public cloud. However, the basis of this kind of infrastructure is a General AI that combines three major human abilities that enable enterprises to tackle IT and business process challenges.

  • Understanding: By creating a semantic data map the General AI understands the world of the company in which its IT and business exists.
  • Learning: By creating Knowledge Items the General AI learns best practices and reasoning from experts. Knowledge is taught in atomic pieces of information (Knowledge Items) that represent separate steps of a process.
  • Solving: With machine reasoning problems are solved in ambiguous and changing environments. The General AI dynamically reacts to the ever-changing context, selecting the best course of action. Based on machine learning the results are optimized through experiments.

To put this into the context of an AWS service disruption:

  • Understanding: The General AI creates a semantic map of the AWS environment as part of the world in which the company exists.
  • Learning: IT experts create Knowledge Items while they are configuring and working with AWS from what the General AI learns best practices. Thus, the experts teach the General AI contextual knowledge that includes what, when, where and why something needs to be done - for example when a specific AWS service is not responding.
  • Solving: The General AI dynamically reacts to incidents based on the learned knowledge. Thus, the AI (probably) knows what to do at this very moment - even if no high availability setup was considered from the beginning.

Frankly speaking, everything described above is no magic. Like every new born organism an AI-defined Infrastructure needs to be trained but afterwards can work autonomously as well as can detect anomalies as well as service disruptions in the public cloud and solve them. Therefore, you need the knowledge of experts who have a deep understanding of AWS and how the cloud works in general. These experts need to teach the General AI with their contextual knowledge that includes not only what, when and where but also why. They have to teach the AI with atomic pieces (Knowledge Items, KI) that can be indexed and prioritized by the AI. Context and indexing enable this KIs to be combined to form many solutions.

KIs created by various IT experts create pooled expertise that is further optimized by machine selection of best knowledge combinations for problem resolution. This type of collaborative learning improves process time task by task. However, the number of possible permutations grows exponentially with added knowledge. Connected to a knowledge core, the General AI continuously optimizes performance by eliminating unnecessary steps and even changing routes based on other contextual learning. And the bigger the semantic graph and knowledge core gets, the better and more dynamically the infrastructure can act in terms of service disruptions.

On a final note, do not underestimate the "power of we"! Our research at Arago revealed that with an overlap of 33 percent in basic knowledge, this knowledge can and is used outside a specific organizational environment, i.e. across different client environments. The reuse of knowledge within a client is up to 80 percent. Thus, exchanging basic knowledge within a community becomes imperative from an efficiency perspective and improve the abilities of the General AI.

About Rene Buest
Rene Buest is Director of Market Research & Technology Evangelism at Arago. Prior to that he was Senior Analyst and Cloud Practice Lead at Crisp Research, Principal Analyst at New Age Disruption and member of the worldwide Gigaom Research Analyst Network. At this time he was considered a top cloud computing analyst in Germany and one of the worldwide top analysts in this area. In addition, he was one of the world’s top cloud computing influencers and belongs to the top 100 cloud computing experts on Twitter and Google+. Since the mid-90s he is focused on the strategic use of information technology in businesses and the IT impact on our society as well as disruptive technologies.

Rene Buest is the author of numerous professional technology articles. He regularly writes for well-known IT publications like Computerwoche, CIO Magazin, LANline as well as Silicon.de and is cited in German and international media – including New York Times, Forbes Magazin, Handelsblatt, Frankfurter Allgemeine Zeitung, Wirtschaftswoche, Computerwoche, CIO, Manager Magazin and Harvard Business Manager. Furthermore he is speaker and participant of experts rounds. He is founder of CloudUser.de and writes about cloud computing, IT infrastructure, technologies, management and strategies. He holds a diploma in computer engineering from the Hochschule Bremen (Dipl.-Informatiker (FH)) as well as a M.Sc. in IT-Management and Information Systems from the FHDW Paderborn.

Testimonials
This week I had the pleasure of delivering the opening keynote at Cloud Expo New York. It was amazing to be back in the great city of New York with thousands of cloud enthusiasts eager to learn about the next step on their journey to embracing a cloud-first worldl."
@SteveMar_Msft
 
How does Cloud Expo do it every year? Another INCREDIBLE show - our heads are spinning - so fun and informative."
@SOASoftwareInc
 
Thank you @ThingsExpo for such a great event. All of the people we met over the past three days makes us confident IoT has a bright future."
@Cnnct2me
 
One of the best conferences we have attended in a while. Great job, Cloud Expo team! Keep it going."

@Flexential


Who Should Attend?
Senior Technologists including CIOs, CTOs & Vps of Technology, Chief Systems Engineers, IT Directors and Managers, Network and Storage Managers, Enterprise Architects, Communications and Networking Specialists, Directors of Infrastructure.

Business Executives including CEOs, CMOs, & CIOs , Presidents & SVPs, Directors of Business Development , Directors of IT Operations, Product and Purchasing Managers, IT Managers.

Join Us as a Media Partner - Together We Can Enable the Digital Transformation!
SYS-CON Media has a flourishing Media Partner program in which mutually beneficial promotion and benefits are arranged between our own leading Enterprise IT portals and events and those of our partners.

If you would like to participate, please provide us with details of your website/s and event/s or your organization and please include basic audience demographics as well as relevant metrics such as ave. page views per month.

To get involved, email [email protected].

Digital Transformation Blogs
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were repetitive. In addition, the paper-based process used to measure patient health metrics was laborious, not in real-time and sometimes error-prone. In their session at 21st Cloud Expo, Sean Finnerty, Executive Director, Practice Lead, Health Care & Life Science at REAN Cloud, and Dr. S.P.T. Krishnan, Principal Architect at REAN Cloud, discussed how they built an Alexa-powered voice application for both patients and nurses. Patients got answers for common qu...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the massive amount of information associated with these devices. Ed presented sought out sessions at Cl...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogger and is a frequent speaker on the use of Big Data and data science to power the organization's key ...
DevOpsSUMMIT Blogs
Sanjeev Sharma Joins November 11-13, 2018 @DevOpsSummit at @CloudEXPO New York Faculty. Sanjeev Sharma is an internationally known DevOps and Cloud Transformation thought leader, technology executive, and author. Sanjeev's industry experience includes tenures as CTO, Technical Sales leader, and Cloud Architect leader. As an IBM Distinguished Engineer, Sanjeev is recognized at the highest levels of IBM's core of technical leaders.
Containers and Kubernetes allow for code portability across on-premise VMs, bare metal, or multiple cloud provider environments. Yet, despite this portability promise, developers may include configuration and application definitions that constrain or even eliminate application portability. In this session we'll describe best practices for "configuration as code" in a Kubernetes environment. We will demonstrate how a properly constructed containerized app can be deployed to both Amazon and Azure using the Kublr platform, and how Kubernetes objects, such as persistent volumes, ingress rules, and...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by FTC, CUI/DFARS, EU-GDPR and the underlying National Cybersecurity Framework suggest the need for a ...
Presentation Slides
Recently, REAN Cloud built a digital concierge for a North Carolina hospital that had observed that most patient call button questions were ...
More and more companies are looking to microservices as an architectural pattern for breaking apart applications into more manageable pieces...
CloudEXPO.TV
"Avere Systems deals with data performance optimization in the cloud or on-premise. Even to this day many organizations struggle with what we call the problem o...
"We began as LinuxAcademy.com about five years ago as a very small outfit. Since then we've transitioned into more of a DevOps training company - the technologi...